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Introduction

ABSTRACT

The spinal cord is the main pathway for information between the central and the peripheral nervous systems.
Non-invasive functional MRI offers the possibility of studying spinal cord function and central sensitisation
processes. However, imaging neural activity in the spinal cord is more difficult than in the brain. A significant
challenge when dealing with such data is the influence of physiological noise (primarily cardiac and respira-
tory), and currently there is no standard approach to account for these effects. We have previously studied
the various sources of physiological noise for spinal cord fMRI at 1.5 T and proposed a physiological noise
model (PNM) (Brooks et al., 2008). An alternative de-noising strategy, selective averaging filter (SAF), was
proposed by Deckers et al. (2006). In this study we reviewed and implemented published physiological
noise correction methods at higher field (3 T) and aimed to find the optimal models for gradient-echo-
based BOLD acquisitions. Two general techniques were compared: physiological noise model (PNM) and se-
lective averaging filter (SAF), along with regressors designed to account for specific signal compartments and
physiological processes: cerebrospinal fluid (CSF), motion correction (MC) parameters, heart rate (HR), res-
piration volume per time (RVT), and the associated cardiac and respiratory response functions. Functional re-
sponses were recorded from the cervical spinal cord of 18 healthy subjects in response to noxious thermal
and non-noxious punctate stimulation. The various combinations of models and regressors were compared
in three ways: the model fit residuals, regression model F-tests and the number of activated voxels. The
PNM was found to outperform SAF in all three tests. Furthermore, inclusion of the CSF regressor was crucial
as it explained a significant amount of signal variance in the cord and increased the number of active cord
voxels. Whilst HR, RVT and MC explained additional signal (noise) variance, they were also found (in partic-
ular HR and RVT) to have a negative impact on the parameter estimates (of interest) — as they may be cor-
related with task conditions e.g. noxious thermal stimuli. Convolution with previously published cardiac and
respiratory impulse response functions was not found to be beneficial. The other novel aspect of current
study is the investigation of the influence of pre-whitening together with PNM regressors on spinal fMRI
data. Pre-whitening was found to reduce non-white noise, which was not accounted for by physiological
noise correction, and decrease false positive detection rates.

© 2011 Elsevier Inc. All rights reserved.

observed in cervical and lumbar spinal cord, for stimuli such as
touch, vibration, thermal, brush and motor tasks (for review, Giove

The spinal cord is the first relay site in the transmission of sensory
information from the periphery to the brain (D'Mello and Dickenson,
2008; Willis and Coggeshall, 2003). To allow a more complete under-
standing of central nervous system processing in health and disease, a
non-invasive technique for assessing the function of human spinal
cord is desirable. To address this need, functional magnetic resonance
imaging (fMRI) of the spinal cord has been developed. Since the pub-
lication of the first article on spinal cord fMRI in 1996 (Yoshizawa et
al., 1996), there have been more than 50 papers on spinal cord fMRI
performed in humans and animals. Spinal cord activation has been
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et al., 2004; Leitch et al., 2010; Stroman, 2005b).

Despite the increasing numbers of spinal cord fMRI studies in the
literature, the characteristics of the functional signal is not fully un-
derstood (Bouwman et al., 2008; Cohen-Adad et al., 2010; Stroman,
2005a), and reported human data have been inconsistent. Possible
reasons for this include: small cord area (~1 cm?) producing intrinsi-
cally low signal to noise data; magnetic susceptibility differences (at
bone/disc interfaces) causing signal loss and image distortion; physio-
logical noise (primarily cardiac and respiratory related) obscuring
functional signals; motion and flow artefacts due to cerebrospinal
fluid (CSF) pulsation; variability of the results across repeated mea-
surements and lack of a standard coordinate template for group analy-
sis (Leitch et al,, 2010; Stroman et al., 2008). One of the key challenges
remaining to establish spinal cord fMRI as a routinely applied technique
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is to adequately account for physiological noise effects when analysing
data.

The blood oxygenation level dependent (BOLD) signal in fMRI is
sensitive to a range of physiological variables. Physiological noise
can induce changes in the BOLD signal and can therefore obscure
the detection of neural activation using traditional experimental par-
adigms, and the relative contribution to measured signal could vary
with increasing field strength, different acquisition parameters or
multi-channel array coils (Bodurka et al., 2007; Hutton et al., 2011;
Kruger and Glover, 2001; Triantafyllou et al., 2005, 2011). Physiolog-
ical noise is a significant confound in connectivity studies, particularly
estimation of the resting state (Birn et al., 2008a; Chang and Glover,
2009a,b; Jo et al., 2010; Lund, 2001; Shmueli et al., 2007). Several
physiological noise sources have been studied in the brain fMRI liter-
ature, including the dominant low frequency fluctuations from the
subject motion, cardiac and respiratory processes (Bhattacharyya
and Lowe, 2004; Bianciardi et al., 2009; Birn et al., 2006; Chang et
al., 2009; Gray et al., 2009a; Lund et al., 2006; Shmueli et al., 2007;
Wise et al., 2004). Various methods of physiological noise correction
for brain fMRI have been proposed e.g. k-space correction (Hu et al.,
1995), independent component analysis (ICA) denoising (Kelly et
al., 2010; Tohka et al., 2008) or image-based correction (Glover et
al., 2000), known as RETROspective Image CORrection (RETROICOR).
RETROICOR models cardiac and respiratory induced signal changes
using a Fourier basis series defined by the relative phases in each
cycle (i.e. cardiac and respiratory) at the time of image acquisition.
More recently Deckers et al. (2006) proposed a selective averaging fil-
ter (SAF) method to account for the cardiac and respiratory effects by
averaging imaging data based on their acquisition time relative to the
cardiac and cycles. Heart rate (HR) (Chang et al., 2009; Shmueli et al.,
2007) and respiratory related fluctuations (respiration volume per
time — RVT, Birn et al., 2006) have been found to explain additional
variance of the BOLD signal recorded in the brain.

Functional images of the brainstem and spinal cord are more severely
affected by physiological noise (Brooks et al., 2008; Diedrichsen et al.,
2010; Harvey et al.,, 2008) than the brain (Cohen-Adad et al., 2010). In
particular, their proximity to the throat/trachea/lungs produces BO-
induced susceptibility effects that can lead to signal change and image
movement (Pattinson et al., 2009; Raj et al., 2001; Van de Moortele et
al., 2002). The relative proximity of these structures (and relative sizes)
to the major arteries lying near their surface and the CSF-filled spaces
surrounding them (Anderson et al., 2009; Naidich et al., 2009), means
that cardiac noise is particularly problematic (Dagli et al., 1999). The pul-
satile nature of arterial blood and CSF flow around the cervical spinal
cord, leads to large signal fluctuations near the boundaries of these struc-
tures (Piché et al., 2009). Indeed, by using hypercapnia as a positive con-
trol stimulus, Cohen-Adad et al. found that the highest responses at the
spinal level were detected outside the cord and may reflect the contribu-
tion from larger veins or CSF pulsation effects (Cohen-Adad et al., 2010).

An improved RETROICOR method has been applied to brainstem
fMRI, and gave a significant improvement in the detection of task-
related activation (Harvey et al., 2008). The complex spatiotemporal
structure of cardiac noise in the cervical spinal cord was recently exam-
ined, and ICA found to be useful when correcting for the cardiac effects
(Piché et al., 2009). The use of principal component analysis (PCA) to
decompose recorded cardiac parameters into their constituent signals
has been proposed, and shown to account for their presence in spinal
functional data (Figley and Stroman, 2009; Stroman, 2006). However
this proposed PCA method has been optimised mainly for cardiac-
related noise with spin-echo acquisition parameters, as in these images
the respiratory effects are not as significant compared to data acquired
with gradient-echo readouts. The SAF method was recently applied to a
placebo analgesia spinal cord fMRI study (Eippert et al., 2009), but the
performance of this correction scheme was not discussed. We have pre-
viously characterised various sources of physiological noise affecting
spinal cord imaging and demonstrated the utility of a physiological

noise model (PNM) for fMRI (Brooks et al., 2008). By including in the
General Linear Model (GLM), basis functions derived from physiological
measurements of cardiac and respiratory processes, and their interac-
tion and a regressor defined by the measured CSF signal intensity time
course, false-positive detection rates of pain-related activity recorded
at 1.5T were reduced and the expected location of activation was
revealed.

The advantage of model-based techniques is that they are derived
from actual physiological measurements from each subject, and the as-
sociated physiological noise can be automatically removed by including
the model as nuisance regressors in the GLM. The noise structure in EPI
time series could therefore be partially whitened by including these
nuisance regressors into the GLM (Lund et al., 2006). Pre-whitening of
fMRI data is advantageous for accurate statistical inference using the
GLM, as temporal noise in the time series is assumed to be random
(white); if it is not, then the statistical inference will be less accurate
(Smith et al., 2007; Woolrich et al., 2001). A previous study compared
the performance of the GLM when using RETROICOR regressors with
and without an AR(1) model, and the AR(1) model was shown to be in-
ferior to physiological noise modelling when used as a pre-whitening
step (Lund et al., 2006).

In this study different model-based physiological noise correction
techniques for spinal cord fMRI will be reviewed and implemented
under the framework of the GLM. We evaluated the performance of
different physiological noise models by comparing the residuals
after model fitting, F-test regression model comparisons and the
number of activated voxels under different types of stimulation. We
aimed to find the optimal physiological noise model for spinal cord
gradient-echo-based BOLD acquisitions, and explored whether pre-
whitening performed using FMRIB's Improved Linear Model (FILM,
Woolrich et al., 2001) is a necessary step to control false positive de-
tection rates. Functional responses in the spinal cord of the rat have
previously been studied using autoradiography with thermal pain
stimuli (Coghill et al., 1991) and fMRI with electrical stimuli (Lilja et
al.,, 2006). Thermal pain and sensory stimuli have been applied in
human spinal cord fMRI studies, and segmental responses observed
following stimulation of different dermatomes (Ghazni et al., 2010;
Lawrence et al., 2008; Stroman, 2009). In the present study, thermal
pain and punctate stimuli were used to investigate spinal cord re-
sponses. A summary of abbreviations used in this paper is given in
Table 4.

Materials and methods
Experimental design and data processing

Eighteen healthy subjects (7 female) aged between 22 and
40 years, were imaged with a 3 T Siemens Trio MR system (Siemens
Medical Systems, Erlangen, Germany ). Subjects were placed in the su-
pine position, and images acquired with the standard 12-channel
head coil, the 4-channel anterior-posterior neck array and upper

Table 1

Voxelwise F-test results showing the percentage of cord voxels in which variance was
significantly reduced (p<0.01), by adding specific regressor(s), above and beyond the
base model. Rightmost column gives the mean p-value for all voxels that passed the
voxelwise significance threshold.

F-test (regressor(s): base model) p<0.01 Mean p
SAF: Basic design 96% 0.0001
PNM: Basic design 99% 0.00004
CSF: Basic +PNM 64% 0.0005
MC: basic + PNM + CSF 64% 0.0006
HR: Basic +PNM + CSF 29% 0.0014
HRcrf: Basic + PNM + CSF 12% 0.0026
RVT: Basic +PNM + CSF 30% 0.0016
RVTrrf: Basic + PNM + CSF 14% 0.0023
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Table 2

The number of activated voxels (relative to the number measured with the Basic + PNM +
CSF model) of each experimental contrast passing an uncorrected statistical threshold
p<0.01 for the different physiological noise models. RP for right punctate, RT for right
thermal, LP for left punctate and LT for left thermal.

Model LP RP LT RT

Basic + PNM + CSF + MC —79 23 10 20
Basic + PNM + CSF + HRcrf + MC —70 —6 6 27
Basic + PNM + CSF 4 HRcrf 13 —20 —21 2
Basic + PNM ~+ CSF + HRcrf + RVTrrf + MC —61 -8 2 15
Basic + PNM + CSF 0 0 0 0
Basic + PNM -+ CSF + RVTrrf 0 15 —24 —1
Basic + PNM —+ CSF + HRcrf + RVTrrf 23 —19 —23 -1
Basic + PNM + CSF + HR -5 42 —43 —-73
Basic + PNM + CSF+ RVT —30 10 —37 —37
Basic +- PNM + CSF+ HR +RVT —25 14 —53 —-91
Basic + PNM + CSF + HR + MC —83 38 —14 —40
Basic + PNM + CSF + HR + RVT + MC —92 18 —43 —63
Basic + PNM —131 —53 —67 —116
Basic + SAF —136 —62 —81 —50
Basic design —153 —64 —133 —56

element of the spine array. To monitor cardiac and respiratory pro-
cesses subjects wore a pulse oximeter and respiratory bellows. The
volume trigger from the scanner host computer was also recorded,
and all data logged on Chart (ADInstruments, USA) at a sampling
rate of 100 Hz. The experimental paradigm consisted of three second
long moderately painful (average pain rating 3.6 out of 10) thermal stim-
uli and one second long non-painful punctate stimuli, which were ap-
plied to the medial aspect of the lower forearm (inner wrist) and base
of the thumb, respectively. Stimuli were applied to the right and left
arms, using pseudo-random ordering, and alternated between thermal
and punctate modalities. We use the notation RP for right punctate, RT
for right thermal, LP for left punctate and LT for left thermal throughout
the rest of this paper. GRE-EPI was used to acquire 9 axial slices covering
the expected locations for spinal activity (C4 to C8) with the following
parameters: TE/TR =39/1000 ms; flip angle = 68°; GRAPPA (factor =2)
parallel acceleration; phase encoding direction: posterior to anterior;
image matrix 96 x 96. The field of view was 128 mm, which gave an in-
plane resolution of 1.33 x 1.33 mm; slice thickness was 4 mm with vari-
able gap (depending on each subjects' anatomy). In total, 80 stimuli were
delivered in the course of the acquisition of the 2564 volumes (~40 min).
During the scan, subjects were requested to remain as still as possible.
Data were pre-processed using the FSL software (FMRIB Software Li-
brary, www.fmrib.ox.ac.uk/fsl). Each slice was motion corrected in 2D
(translation only) using FLIRT (part of FSL, Jenkinson et al., 2002). Sub-
sequently, data were spatially smoothed (3 mm FWHM), high-pass
temporal filtered (300 s cut-off), and activity within each slice assessed
independently with slice-specific physiological noise regressors.

Table 4
Summary of abbreviations used in the paper.

Abbreviations Abbreviations

SAF Selective averaging RP Right punctate
filter
PNM Physiological noise LP Left punctate
model
CSF Cerebrospinal fluid RT Right thermal
MC Motion correction LT Left thermal
HR Heart rate RSS Residual sum of squares
crf Canonical HR NRV Normalised residual

response function variance

HRerf HR convolved with crf Ri Relative index of
parameter estimates
RVT Respiration volume
per time
rrf Respiration response B Basic design only
function
RVTrrf RVT convolved with ~ BF Basic design with FILM
rrf
GLM General linear model BP Basic design with PNM +
CSF
BPF Basic design 4+ PNM + CSF
with FILM
G Goodness metric of false-

positive rate

Physiological noise modelling methods

Here we will give a brief introduction to the different physiological
noise modelling methods implemented in this study. Physiological
noise correction techniques rely critically on the timing of the image
acquisition therefore should ideally be performed on a slice-by-slice
basis (Birn et al., 2006; Jones et al., 2008). All the models used in
this study utilise the acquisition timing for each slice, which was
obtained by dividing the TR by the number of slices, time-locked to
acquisition of each volume.

Physiological noise model (PNM)

RETROICOR is a retrospective image-based correction technique
introduced by Glover et al. (2000). The cardiac and respiratory phases
of each fMRI volume are derived from their acquisition time relative
to a separate physiological recording, and modelled via a Fourier
basis series with a combination of sine and cosine harmonics. The
time series are regressed to the image data and can then be extracted
from the fMRI signal to reduce the noise (Corfield et al., 1999). In our
previous study (Brooks et al., 2008), various sources of physiological
noise were explored and, in addition to independent effects of cardiac
and respiratory noise, the interaction between these two processes

Table 3
Summary of physiological noise models.
Model Description Suggestion
Main model SAF  Selective average filter — Not recommended

Divide each cardiac/respiratory cycle into a given number of bins

PNM Physiological noise model —

Fourier series to model the cardiac, respiratory and interaction phases

Additional model CSF  Cerebrospinal Fluid —

Averaged time course from voxels around the spinal cord showing the

most variance
MC Motion correction parameters —
X and Y translations

HR Heart rate —
Smoothed heart beat rate (beats per minute)

RVT  Respiration volume per time —

The difference between the maximum and minimum of each respiratory

cycle divided by the period of the cycle

Less effective model of physiological noise in the spinal cord,

with potentially large loss of degrees of freedom (e.g. 140 regressors)
Recommended

Most effective physiological noise correction method tested
Recommended

Significantly reduced residual variance in this dataset and increased
statistics

Recommended/careful

Produced significant reduction of variance in this dataset but can also
affect statistics if correlated with stimuli

Careful

PRODUCED marginal reduction of variance in this dataset but can also
affect statistics if correlated with stimuli

Careful

Produced marginal reduction of variance in this dataset but can also
affect statistics if correlated with stimuli
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was demonstrated to be a significant source of noise. Therefore the
PNM, a modification of conventional RETROICOR, was presented.

Smoothing and peak detection was conducted on the recorded
pulse oximeter data to assign a cardiac phase (6¢) to each acquired
image. While respiratory phase (6g) was assigned using the histo-
gram equalised transfer function proposed by Glover et al. (2000),
which takes into account both the relative position in the respiratory
cycle and depth of breathing. A summary illustration of cardiac and
respiratory phase assignment is shown in Fig. 1(a). Cardiac and respi-
ratory effects were modelled using the separate sine and cosine terms
of the principal frequency (8¢ and 6g) and harmonics. On the basis of
empirical data, we have utilised regressors up to the third harmonic
frequencies for both cardiac and respiratory terms (i.e. 6¢c to 46, 6g
to 46g) — giving a total of 16 regressors. An additional 16 multiplica-
tive sine/cosine terms, which take into account the interaction be-
tween cardiac and respiratory effects in the physiological noise,
were given by sin or cos (ABc+B6g), where A=1,2 and B=1, 2. In
total 32 nuisance regressors are included in the basic PNM.

Selective averaging filter (SAF)

The SAF models physiological signals by averaging imaging data
based on their acquisition time relative to the nearest respiratory
and cardiac event (e.g. end inspiration or systolic peak). Similar to
the PNM, which uses a Fourier basis set, the SAF uses a basis set ex-
pansion of the phase values — in this case a finite impulse response
(FIR) basis set. In the original implementation by Deckers et al.
(2006), the period of each cycle (cardiac or respiratory) was evenly
divided into a number of bins (equivalent to the FIR basis functions),
and every fMRI volume assigned a unit entry in one of the cardiac and
one of the respiratory bins. The resulting physiological noise esti-
mates are subtracted from the fMRI time series. A summary illustra-
tion of this process is shown in Fig. 1(b). In this study we applied
the SAF as a confound design matrix within the GLM. The period of
each cycle (cardiac and respiratory) was evenly divided into N bins
(e.g. N=1,2,...20), and each bin modelled with a separate regressor.
In our implementation the relative timing of each slice determines
which bin it is allocated to, and thus they are assigned a unit entry
in the corresponding (and separate) cardiac and respiratory regressors.
An important parameter of this method is the number of bins. By using
our FMRI data, we estimated the optimal number of bins for respiratory
and cardiac cycles independently by calculating the reduction in variance

obtained when systematically increasing the number of bins used for re-
gressor generation.

Cerebrospinal fluid (CSF)

The spinal cord is surrounded by cerebrospinal fluid (CSF), which
is pulsatile (Willis and Coggeshall, 2003). The effect of CSF pulsation
is twofold: it induces cord movement and generates cardiac driven
signal change across the imaging slice. The latter is driven by the rel-
ative flow sensitivity of EPI pulse sequences. In this study, the vari-
ance map for the raw signal time course (after motion correction)
was computed within a region including both the spinal cord and
CSF space, and thresholded such that only voxels whose variance
lay in the top 20th percentile were included in the resultant CSF
mask. The CSF mask was then applied to the motion corrected time
course data to extract the mean time course for voxels exhibiting
the largest variance. The obtained time course was orthogonalised
against the experimental design matrix and included in the GLM as
the CSF regressor. Voxels within the CSF mask were mainly located
in the subarachnoid space, i.e. in the CSF adjacent to the cord.
Fig. 2(a) shows the CSF masks, CSF time series and power spectrum
from one subject as an example.

Heart rate (HR)

Heart rate is regulated by processes at the level of the central ner-
vous system and alters blood volume and blood flow through hemo-
dynamic mechanisms (de Munck et al., 2008). In a recent study it was
reported that subjects' heart rate explained an additional 1% of BOLD
signal variance beyond respiratory (RVT) and eight RETROICOR re-
gressors (Shmueli et al., 2007). In agreement with Shmueli et al., a ca-
nonical HR response function (crf) was proposed (Chang et al., 2009)
and found to significantly reduce the variance of resting BOLD time
series when applied together with a respiratory variation function
in a linear model. In this study, HR was calculated by translating the
beat-to-beat interval (in seconds) from the pulse oximeter trace
into beats per minute (i.e. 60/interval BPM). The BPM trace was
smoothed using a moving average filter (kernel size=10 adjacent
points in the BPM trace). The HR regressor is simply the value of the
smoothed BPM trace at the acquisition time for each slice. In addition
the HR regressor was convolved with the crf (adapted from Chang et
al., 2009) to give a new time course of HRcrf — an alternative

a Cardiac phase T
>
LR
B=2n(t/T) :
|
- ; -
Slice timing

Respiratory cycle histogram
0:=+m[ZA/2(A+B)]

Cardiac phase

1] 2| 3| 4|5
1] 21314l

Respiratory cycle

1] 2| 3] 4|5

Fig. 1. Schematic illustrations of the two physiological noise modelling methods. Information about cardiac cycle, respiratory cycle and fMRI slice timing is obtained from physio-
logical monitoring data. a) The PNM models cardiac and respiratory noise using a Fourier-series with a combination of sine and cosine harmonics and interaction terms. Cardiac and
respiratory phases are determined as shown in the figure. b) The SAF models physiological signals by averaging imaging data based on their acquisition time relative to the nearest
respiratory and cardiac event. The period of cardiac or respiratory cycle is evenly divided into bins. FMRI volume assigned to the same bins will be averaged.
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regressor to further investigate the heart rate influence in the spinal
cord. Fig. 2(b) shows the instantaneous HR plot (blue), the smoothed
HR (red), the HRcrf (green) and the corresponding power spectra
from one subject as an example.

For pain-related studies, clinicians often use HR as a complemen-
tary objective measure of pain. HR should increase as pain increases,
which is mostly likely related to an increase in sympathetic activity.
A significant correlation between HR and pain intensity has previously
been observed in healthy subjects (Tousignant-Laflamme et al., 2005).
Therefore, HR might have an impact on parameter estimation of the
thermal painful stimuli applied in this study if they are correlated.

Respiration volume per time (RVT)

Previously observed in the brain, low frequency fluctuations in
end tidal blood CO2 concentration (EtCO2) are significantly correlat-
ed with the BOLD signal and are an important source of signal vari-
ance (Wise et al., 2004). These low frequency CO2 fluctuations are
hypothesised to be due to changes in the rate and depth of breathing,
which are not corrected by the basic Fourier series terms based on re-
spiratory phase. The respiration volume per unit time (RVT) was pro-
posed to model the variations in breathing depth and rate (Birn et al.,
2006). Furthermore, it was shown that convolving the RVT time se-
ries with the derived respiration response function (rrf) has a signif-
icant correlation to resting state brain fMRI time series across
widespread regions of grey matter, potentially obscuring “real” task
activation and altering correlations between brain regions (Birn et
al., 2008b; Chang and Glover, 2009b).

In this study, RVT was estimated according to Birn et al. (2006) as the
difference between the maximum and minimum of each respiratory
cycle (i.e. the amplitude difference between the peaks/troughs of the
respiration waveform) divided by the period of the cycle. The RVT values
were interpolated to obtain the fMRI RVT regressor. In addition the RVT
regressor was convolved with the rrf (adapted from Birn et al., 2008b) to
give a new time course: RVTrrf. Fig. 2(c) shows the instantaneous

respiratory cycle plot (blue), the RVT (red), the RVTrrf (green) and the
associated power spectra from one subject as an example.

Motion correction parameters (MC)

Even after motion correction, various effects like interpolation errors,
changes in local magnetic susceptibility due to movement of the body,
spin history effects, etc. can still induce motion-correlated intensity
changes in BOLD data (Johnstone et al., 2006). Motion parameters are
frequently included in the design matrix to remove motion-correlated
signal, which can reduce the number of type I errors (false positives) at
the expense of increasing type Il errors (false negatives) (Friston et al.,
1996; Johnstone et al., 2006). However, if motion is correlated with
task then this will reduce statistical significance. In this study, motion
correction parameters were included in the model test. Each slice was
motion corrected in 2D (translation only) and the x and y translation pa-
rameters were used as motion correction regressors (Fig. 2d).

Model evaluation

Different models (SAF, PNM) and combinations of regressors (CSF,
HR, HRcrf, RVT, RVTrrf, and MC) were compared to the basic paradigm
design matrix (referred to as Basic below) used in a GLM model in
MATLAB (R2010a, Natick, Massachusetts; The Mathworks Inc). Each
model set was first evaluated by computing the residual sum of
squares (RSS) after model fitting. To provide an indicator of the rela-
tive improvement (i.e. variance reduction) obtained with each model,
the RSS was divided by the number of degrees of freedom (dof) and
then normalised by the RSS/dof for the model with the basic design
only (i.e. just the convolved stimulus time courses), in order to give
a measure of normalised residual variance (abbreviated to NRV). A
mask containing only the spinal cord area was manually drawn in
FSLView using the mean functional image from each run. All analysis
was based on the 6455 voxels lying within the spinal cord masks
combined across all 18 subjects. Next, the significance of sets of

a
Power Spectra
2 MMM P e =
on
2 0 0.25 0.5Hz
0 250
b
=
=™
m
c B,
0.5Hz
d 0.5Hz
A __A_AI\AA
Y translation o
0 Time (s) 2564 0 0.25 0.5Hz

Fig. 2. Additional regressors used to model low frequency signals (examples taken from a single subject). Left: time courses of measured and derived parameters, and right: asso-
ciated power spectra. a) Top 20th percentile variance map used for CSF time series extraction. Three CSF masks and one time course are shown as example. b) Real time heart rate
(blue), smoothed heart rate time series used as HR regressor (red) and HR convolved with cardiac response function (“HRcrf”, green). c) Respiratory waveform (blue), computed
RVT time series (red) and RVT convolved with respiratory response function (“RVTrrf”, green). d) 2D motion correction regressors.
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regressors was tested using the F-test regression model comparison,
which identified voxels where the test model explained a significant
amount of noise above the base model. Then, the model set was eval-
uated by determining the number of voxels marked “active” by each
model.

The correlations between all regressors were examined to assess
the impact of non-zero correlation between nuisance regressors and
the experimental regressors (i.e. RT, LT, RP, LP). The magnitude of
these correlations, the relative sizes of the parameter estimates ([3)
and their combined effect on the estimated statistics was explored.
The relative index (Ri) was defined as the ratio of parameter esti-
mates (3 for nuisance regressor divided by [3 for experimental regres-
sor) multiplied by the correlation coefficient (cc), as Ri = (Pregressor/
B’Experimental) * CCregressor,Experimental- [5 paramEterS reflect the amount
of variance accounted for by each regressor in the GLM. The relative
index (Ri) reflects the relative importance of the tested nuisance re-
gressor, modulated by the correlation between the tested nuisance
regressor and the experimental regressor. The relationship between
Ri and experimental T statistics after including separate nuisance re-
gressors (HR, RVT, x or y) was also investigated.

Pre-whitening tests

Finally, pre-whitening tests were performed using the temporal
autocorrelation estimation and pre-whitening tool, FILM, in FSL. It is
known that fMRI time series typically show temporal autocorrelation,
even after a high-pass filter has been applied to remove slow varying
trends. Autocorrelation estimation by FILM is performed locally at
each voxel on the residuals after the initial GLM fit. Importantly, esti-
mation is further improved by using nonlinear spatial smoothing
(SUSAN, part of FSL) within tissue type. A filter is constructed in
order to pre-whiten each voxel's time series, by including the pre-
whitening matrix in the GLM. This step gives improved estimation ef-
ficiency compared with methods that do not pre-whiten (Woolrich et
al., 2001). Autocorrelation in fMRI time series may be due to various
factors, only one of which is physiological noise. The effectiveness of re-
ducing residual variance in fMRI time series by using physiological noise
models alone is hampered by the fact that the noise spectrum cannot
generally be characterised by a few discrete frequencies (Toga and
Mazziotta, 2002). We investigated whether pre-whitening could reduce
non-white noise, which, if not already compensated for by the applied
physiological noise model, might additionally decrease false positive
detection rates (through improved modelling).

We only choose the basic experimental design and PNM + CSF for
testing, as this was the optimal model in a previous report (Brooks et
al., 2008). Four cases were examined: basic design only (B), basic de-
sign with FILM (BF), basic design with PNM + CSF (BP) and basic de-
sign +PNM + CSF with FILM (BPF). To assess the impact of pre-
whitening on FMRI time series, normalised residual variance (NRV,
normalised against basic design only) for each applied model was
inspected. Subsequently, spatial patterns of activated voxels in the
spinal cord and CSF were studied to determine if pre-whitening (in
addition to physiological noise modelling) altered false-positive de-
tection rates. To achieve this we defined a new metric (G, Goodness)
which is the ratio of the normalised voxel counts (by total voxel num-
ber) in the spinal cord and CSF. A CSF mask was manually drawn
around the previously defined spinal cord mask for each subject,
and a one-voxel gap left between cord and CSF masks to avoid partial
volume voxels on the edge of the spinal cord (which might include
draining veins). Active voxels in the cord or CSF were normalised to
the total voxel count in each specific area. Therefore, the model that
reduced putative false positives in the CSF space, but increased the
number of active cord voxels (i.e. greater G value) was judged to be
superior. To facilitate comparison, all G values were normalised to
the G values obtained using the basic design without pre-whitening.

Results
Determining the optimal number of bins for the SAF model

Plots of NRV as a function of the number of bins (1 to 70) in the SAF
model for cardiac and respiratory separately are shown in Fig. 3. The
mean and standard error of each bin number for all subjects over all
6455 spinal cord voxels are shown. It can be seen from the figure, the
largest reduction in residuals, i.e. the lowest NRV, was found for the
model with the most bins (70), which was used for further analyses.

Model evaluation

A plot of NRV (mean and standard error across all voxels) for dif-
ferent models is shown in Fig. 4. NRV was lower for the PNM (with 32
regressors) than for the SAF (with 140 regressors/bins). Therefore the
PNM was used as the basis for our physiological noise model, and the
other low frequency confound regressors — CSF, HR, HRcrf, RVT,
RVTrrf and MG, included in further tests. It can be seen from Fig. 4
that the CSF and MC regressors clearly explain considerable variance
in the cord as NRV dropped substantially with their inclusion. NRV
was also reduced by including HR and RVT regressors, but not by the
same amount as for the CSF and MC regressors. Note that the residual
variance was not reduced by including either respiratory (RVTrrf) or
cardiac (HRcrf) response function.

Voxelwise F-tests were performed by comparing a base model and
the base model plus specific regressor(s), and results were pooled over
all spinal cord voxels. Table 1 shows the percentage of all cord voxels
in which a given test model accounted for significantly more variance
than the base model (threshold p<0.01), and the mean p-value of the
thresholded voxels. SAF and PNM were tested separately against the
basic experimental design first. Including either SAF or PNM reduced
the signal variance significantly. Almost all voxels (99%) showed that
PNM gave a significantly (mean p-value of 0.00004) better fit to the
data than the basic design. PNM also outperformed SAF in this model
F-test comparing the number of thresholded voxels and the mean
p-value. Including CSF was significant for over 64% of all voxels. On
top of PNM and CSF, 64% of all voxels also significantly reduced in var-
iance when including MC. By comparison, HR and RVT regressors were
significantly beneficial for only about 30% of all voxels. It should be
noted that the HRcrf and RVTrrf regressors were not as effective as
the original HR and RVT across the various F-tests performed.

Finally, we assessed the amount of activity from statistical paramet-
ric maps obtained using different testing models. The number of voxels
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Fig. 3. Plot of normalised residual variance (NRV) as a function of the number of bins in
the SAF model. As expected, the largest reduction in residuals, i.e. the lowest NRV, was
found for the model with highest number of bins. The NRV would not be expected to
increase because of the huge number (2564) of time points in the data.
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Fig. 4. Quantifying the influence of different physiological noise models on residual variance in spinal cord FMRI data. Note that NRV was clearly lower when modelling physiolog-
ical noise with a PNM compared to modelling it with SAF. The CSF signal clearly explains variance in the cord as NRV dropped substantially with inclusion of this regressor. NRV was
also lower after adding HR, RVT and MC regressors. Note that residual variance within the spinal cord did not show any reduction when including either respiratory (RVTrrf) or

cardiac (HRcrf) response function.

passing a statistical threshold (uncorrected p<0.01) for each of the four
stimuli was compared between the models. Basic + PNM + CSF, previ-
ously shown to be a highly robust model (Brooks et al., 2008), was trea-
ted as a base model to show the relative changes in the number of
activated voxels for various different models, as detailed in Table 2.
The models listed in Table 2 are ordered according to the number of ex-
perimental contrasts (i.e. different stimuli or combinations of stimuli)
that showed increases in the number of active voxels. For the purposes
of this ordering, each experimental contrast scored + 1 if the number of
active voxels increased and scored —1 otherwise. Compared to the
basic model alone, more voxels were identified as active with both
PNM and SAF. Inclusion of CSF and MC regressors (except for LP) pro-
duced a noticeable increase in both the number and significance of ac-
tivated voxels. In general, a decrease in the number of voxels passing
statistical threshold was observed when the model included HR or
RVT regressors. Including HRcrf and RVTrrf was rarely beneficial.

Correlation between nuisance regressors and the basic design

The correlations between all slice basis regressors (except SAF)
were examined first, including the experimental design (8 EVs and
corresponding temporal derivatives), PNM (32 terms), HR, CSF and
MC (x and y translations). HR correlated modestly with RVT (R=
—0.05 to 0.38). Interestingly CSF mainly correlated to the first har-
monics of the cardiac term from the PNM regressors (sine term R=
—0.49 to 0.84; cosine term R= —0.77 to 0.55). This indicates that
cardiac function has a significant influence on CSF signal recorded
from around the spinal cord and agrees with previous studies (Dagli
et al., 1999; Friese et al., 2004; Piché et al., 2009). Furthermore, RVT
correlated with the second harmonics of the respiratory cosine term
of the PNM (R=0 to 0.36).

The y translation motion parameter correlated most strongly with
the first harmonics of respiratory cosine term of PNM (R= —0.16 to
0.85), which indicates that respiratory changes have a major impact
on estimates of spinal cord motion, primarily in the dorsal-ventral direc-
tion (i.e. in the phase encoding direction). Respiratory processes pro-
duce changes in the main magnetic fields (By) that lead to phase
offsets across the imaging slice that are physiological in origin. These re-
spiratory influences produce apparent movement in the phase-encode
direction in spinal cord imaging data. Indeed, this effect can be visualised

from inspection of the power spectrum of y-translations (Fig. 2d), which
reveals a respiratory influence on this parameter (y) at ~0.3 Hz (the typ-
ical respiratory rate).

Notably both x (R=—0.85t00.93) and y (R= —0.91 to 0.94) trans-
lation parameters highly correlated with the CSF regressor. This is
expected as rapidly moving CSF is a major source of motion artefacts.
HR (R=—0.25 to 0.25), RVT (R=—0.14 to 0.38), x (R=—0.11 to
0.07) and y (R=—0.07 to 0.1) translation parameters were found to
be slightly correlated with the experimental design terms. The impact
of this non-zero correlation between nuisance and experimental regres-
sors was explored further due to the potentially large effects it can have
on the final statistics. Fig. 5 plots the changes in T-statistics for the four
experimental regressors (RT, LT, RP and LP) against the relative index
Ri after adding one specific regressor (either HR, RVT, x or y) to the
Basic + PNM + CSF model used to account for physiological noise: the
change in T-statistic is defined as the T-statistic of the base model plus
extra regressor minus the T-statistic of the base model (base model =
Basic + PNM + CSF). A negative linear trend was found for the correlated
nuisance regressors (HR, RVT and motion parameters), demonstrating a
reduction in T-statistics due to shared variance between regressors.
Where the 3 value of the nuisance regressor is large relative to the exper-
imental regressor, even a small positive correlation between the two
translated to a large reduction in T-statistics. However, negative values
of Ri were associated with increased T-statistics. Without ground truth
it is impossible to determine whether this effect was due to an increase
of either true or false positives. It is interesting to note that this effect
appears to be stronger (steeper slope) during painful thermal stimuli,
particularly for HR and RVT. Among these four tested regressors, motion
parameters appear to have a smaller impact on model T-statistics.

Pre-whitening tests

A plot of NRV (mean and standard error across all voxels) for different
models is shown in Fig. 6. Including the basic design (B) with FILM pre-
whitening (BF) reduced the variance of the residuals in our spinal cord
data, as indicated by the reduction in NRV. However, a larger reduction
was found when the model included just the PNM plus CSF terms (BP).
The greatest reduction in variance was obtained when using pre-
whitening together with PNM plus CSF regressor (BPF). Note that the
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Fig. 5. Impact for T statistics. This figure plots the changes in T-statistics for the four experimental regressors (RT, LT, RP and LP) against the relative index Ri after adding one specific
regressor (either HR, RVT, x or y) to the Basic + PNM + CSF model. Negative linear trend was found between T statistics changes and Ri. Note that 1) all regressors have more impact
for painful thermal stimuli than non-painful punctate stimuli. 2) Negative linear trend is more apparent and consistent for HR and RVT.

variance obtained when modelling with the basic model alone (B) is
shown for reference.

Fig. 7 shows the model comparison results for all four stimuli from
first level analysis of 18 subjects. The upper panels in the figure show
the normalised activated voxel numbers (mean 4+ standard error,
p<0.01 uncorrected) in cord (solid) and CSF (dashed) areas for differ-
ent models and stimuli (as labelled underneath). The PNM increased
the number of activated voxels both in the cord and CSF areas mainly
because the PNM models significant amounts of physiological noise.

Il B: Basic design

[ BF: Basic design with FILM

[T BP: Basic + PNM CSF

[_1BPF: Basic + PNM CSF with FILM

0.95

0.90

* Mean and standard error across 18 subjects

0.85

NRV
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0.75
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B BF BP BPF
Fig. 6. A plot of NRV for models with or without pre-whitening. Note that the variance
obtained when modelling with only the basic model alone (B) is shown for reference.
Including the basic design (B) with FILM (BF) pre-whitening reduced variance of the
residuals. A larger reduction was found when the model included just the PNM plus
CSF terms (BP). The greatest reduction in variance was obtained when using pre-
whitening together with PNM plus CSF regressor (BPF).

However, the number of activated voxels, both in the cord and CSF
areas, drops when using pre-whitening — which may relate to a
reduction in false positive detection rates. Lower panels in the
figure show the normalised G values (mean =+ standard error) for all
models. G increased for the RP and LP stimuli when using FILM
(pre-whitening) with the basic design, but slightly dropped when
used with the RT and LT stimuli. Adding on PNM and CSF without
pre-whitening helped to increase G for all four stimuli, but the greatest
G values were achieved for each stimulus when applying PNM and CSF
together with pre-whitening. Therefore, pre-whitening appeared to
produce a greater reduction in false positive detection rates in the CSF
than in the cord.

Discussion

Human spinal cord fMRI is feasible, but care should be taken when
removing the physiological noise from the data. Most previous stud-
ies did not adequately account for physiological noise, and instead
have used low-pass or band-pass filters to remove high frequency
noise (Agosta et al., 2008; Maieron et al., 2007; Summers et al.,
2010). Such filtering typically removes a large proportion of the var-
iance associated with the actual data measurement (Friston et al.,
2000). To adjust residuals for the associated loss of degrees of freedom
and avoid artificial inflation of t-scores, a matrix describing the applied
pre-filtering, or a noise correlation matrix, should be incorporated with-
in the GLM. An alternative approach is to implement a physiological
noise model (based on measurements taken from each subject) within
the framework of GLM, which corrects for the physiological noise and
implicitly accounts for loss of degrees of freedom. In this study we
have demonstrated the impact of physiological noise on our ability to
detect activity recorded using fMRI in the human cervical spinal cord.
To achieve this we evaluated several different approaches to modelling
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Fig. 7. How pre-whitening affects first level statistics. Upper panels: plots (with error bars) of activated voxel numbers (p<0.01 uncorrected) in cord (solid) and csf (dashed) areas
for four different models (normalised by total voxel number in the area of each subject). Lower panels: Goodness of model (G) — ratio of activated voxel numbers in cord and csf,

normalised to the values found using the basic design.

physiological noise within the framework of the general linear model.
The major findings are discussed below.

PNM outperformed SAF

We were able to demonstrate the improvement in removing physi-
ological noise from fMRI time series with a model-based technique (the
PNM — a modified RETROICOR model, Brooks et al., 2008; Glover et al.,
2000) compared to a technique based on selectively averaging data
points acquired at similar points in the cardiac and respiratory cycle
(Deckers et al, 2006). The improvement in noise modelling was
assessed from the reduction in residual variance after filtering with
the PNM compared to the SAF (Fig. 4), the F-test regression model com-
parison (Table 1) and the increased voxel counts detected within the
spinal cord (Table 2).

The SAF uses a selective averaging method (FIR basis functions) to
model the noise estimates according to discrete intervals (bins) in
each cardiac and respiratory cycle (Deckers et al., 2006). The PNM as-
sumes that physiological effects will be periodic, and uses a series of
sine and cosine (Fourier) basis functions to best fit the data. In princi-
ple, the main difference between these two approaches is the set of
basis functions used. When using low bin numbers with the SAF, it
is more likely that the PNM would be a better representation of the
induced physiological signal, as a Fourier basis always relates small
changes in phase with smooth changes in the signal. For large bin
numbers, there is likely to be little difference between the techniques,
as in this situation FIR functions can be quite smooth. However large
bin numbers incur a significant loss in degrees of freedom. Concerning
estimation of respiratory phase, the PNM uses a histogram equalised
transfer function that accounts for both the rate and depth of the respi-
ratory cycle — and thus is a better model of Bo-related artefacts (Raj et
al., 2001). The improved performance of the PNM over SAF/FIR-based
approaches may be due to this crucial difference.

In the original paper that describes the SAF technique, in the brain,
40 and 21 bins were chosen to account for cardiac and respiratory-
related signals, respectively. These numbers were derived from simu-
lation tests on voxels with significant physiological artefacts, and
were based on an identical metric (NRV). Whilst we were not able to
exhaustively examine the effect of increasing bin numbers for the SAF
approach, we chose a relatively high cut off of 70 bins for the cardiac
and respiratory cycles. For bin numbers greater than 20 the reduction

in NRV (see Fig. 4) is relatively modest. Whilst this difference between
the optimal bin numbers might be due to increased physiological noise
in spinal cord data compared to the brain, we believe it is more likely
that when modelling complex structured noise with this technique
there is no single recommendation for the optimal number of bins.
The reasoning behind this is as follows: the selection of the optimal
bin number is driven by both the tendency to require more bins to
account for small differences in complex noise structures, and the
penalty for loss of degrees of freedom (dof) - thus short time series
data will encounter a dof penalty earlier than long time-series data -
but the noise components may be no better modelled in either scenario.
The final SAF model required 140 independent regressors, significantly
higher than the PNM, which produced lower residual variance with
only 32 regressors and therefore incurs a smaller penalty through loss
of degrees of freedom than for the SAF model.

HR and RVT

Besides the cardiac-cycle dependent terms in the PNM and low
frequency CSF regressor, a regressor describing variation in heart
rate was also tested in this study. When including the HR term on
top of the PNM and CSF regressors, around 29% of all voxels were
found to have significantly reduced variance (Table 1). The PNM,
CSF and HR regressor together reduce the NRV to 75% of its original
value (Fig. 4). However, a decrease in the number of voxels identi-
fied as active was found when using a model including the HR re-
gressor (see Table 2), in particular for painful thermal stimulation.
One possible reason for this is the slight correlation (R=—0.25 to
0.25) between HR and the experimental design, which was confirmed
by tests based on stimulus parameter estimation (beta), correlation
and T-statistic changes (see Fig. 6). Three outcomes resulting from
non-zero correlation between HR and the design are possible: false pos-
itives are removed (lower type I error); “true” active voxels sharing var-
iance with HR may be removed (higher type II error); and voxels in
slices where there is a negative correlation between the design and
HR will have increased T-statistics. Without ground truth it is impossi-
ble to determine the relative impact of these processes, however, as al-
ways one should be careful when including a nuisance regressor that
potentially correlates with your design — particularly HR in pain-
related experiments.
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The observation of correlation between HR and painful stimuli has
important clinical neuroimaging implications. It agrees with the find-
ings of Tousignant-Laflamme et al. (2005) that there was a link be-
tween heart rate and pain perception. However, the correlation was
only found for men and not for women in that study. We did not
find a gender effect in the current study. Heart rate variation has
been shown to have substantial correlations to fMRI signal and strong
correlations to alpha power in resting state (de Munck et al., 2008), indi-
cating that heart rate variations may be reflected in/or respond to resting
state networks. More recently an fMRI study using synchronous or
delayed electrical skin stimuli showed that sensory processing in brain-
stem, limbic and cortical regions depends on when stimuli are experi-
enced in relation to heart beat timing (Gray et al, 2009b). It is
reasonable to expect that there might be a similar response in the spinal
cord — the first site to process incoming sensory/nociceptive information.

RVT, like the HR regressor in this study, was found to remove addi-
tional variance from our fMRI data, but slightly decrease the number of
voxels marked as active. In the original Birn et al. (2006) study, the re-
gression of RVT was repeated for 51 temporal offsets (—10s to + 15s)
in order to account for the unknown and likely variable delay between
respiration changes and BOLD responses in the brain. It should be
noted that in the current study we did not shift the RVT regressor in
this way. RVT correlated with HR (R=0.15+0.03) and the second har-
monic respiratory cosine term in the PNM (R=0.18 +-0.1). Tests based
on stimulus parameter estimation and correlation (see Fig. 5) showed
that RVT had a greater effect on T-statistics for thermal stimuli, which
could be due to alteration in breathing patterns during experiments uti-
lising painful stimulation. As with the HR regressor, one should be careful
when including an RVT regressor in studies utilising painful stimuli, in
the same way as care needs to be taken when including correlated mo-
tion parameters as regressors. This is discussed more fully in the latter
section on Limitations.

Concerning the nature of the HR induced signal change, a specific re-
sponse function associated with the HR has been proposed, and when
used in conjunction with a respiratory response function (rrf, Birn et
al., 2008b) resulted in significant reductions of variance in resting
BOLD timeseries (Chang et al,, 2009). Compared to the unconvolved
HR and RVT, the convolved response functions (HRcrf and RVTrrf) did
not remove additional signal variance from the data. F-test results
showed that HRcrf and RVTrrf accounted for unmodelled signal vari-
ance in less than 15% voxels (Table 1). When used in combination,
HRcrf and RVTrrf increased active voxel counts for punctate stimulation
of the left hand, and reduced counts for the other 3 stimuli (Table 2).
One possible reason for this observation is that convolving with the
low-frequency kernel response function decreases the correlations
between HR/RVT and the experimental design.

Motion correction parameters

Commonly used physiological noise correction techniques rely
critically on the timing of the image acquisition relative to the cardiac
and respiratory cycle, but do not account for the direct effects of sub-
ject motion. Motion-induced fluctuations in the magnetic resonance
signal will decrease the reliability of the GLM parameter estimates
and therefore decrease statistical sensitivity. Motion parameters can
be included in the design matrix as nuisance variables to regress out
residual effects following motion correction (Friston et al., 1996;
Lund et al., 2005). Considering cord motion, Summers et al. and Miku-
lis et al. found that it depended on position in the cardiac cycle and
was principally in the rostro-caudal (S/I) direction (Mikulis et al.,
1994; Summers et al., 2006). However Figley and Stroman (2007)
characterised cord motion in three dimensions, and found that move-
ment is largest in the dorso-ventral (A/P) direction. In this study, the y
translation motion parameter (in the dorso-ventral direction) correlated
with the first harmonic respiratory cosine term in the PNM (R= —0.16
to 0.85), which confirms that respiration has a clear impact on the spinal

cord movement and mostly on dorsal-ventral direction (in the phase
encoding direction of these axially acquired slices). Motion parameters
significantly reduced the variance of the data (Fig. 4) and were shown
to significantly account for additional signal variance for 64% of all voxels
(assessed by F-test, Table 1). Moreover, they increased the number of
detected active voxels for 3 out of the 4 experimental contrasts
(Table 2). There was slightly correlation (—0.11 to 0.1) between the
MC regressors and the experimental design, but the impact for
parameter estimation and statistical results was not as great as for HR
and RVT.

Motion-corrected RETROICOR was recently proposed to take slice-
timing errors introduced by registration into account (Jones et al.,
2008). A new set of Fourier regressors specific to each voxel were
scaled by a slice motion contribution factor, and the modified regres-
sors found to explain additional variance in the data. However, such
correction schemes assume linear relationships between the detected
motion and the induced signal changes, and are also difficult to im-
plement as they require voxel wise regressors. Certainly the best
way to correct for motion is to limit it in the first place — via appropri-
ate head padding and subject preparation. In addition, prospective
motion correction techniques can also be used, which correct for mo-
tion during the acquisition of an fMRI time series on a slice-by-slice
basis by continuously updating the imaging volume position to follow
the motion of the head (Speck et al., 2006). Unfortunately, the appli-
cability of these techniques to the neck is currently not known.

Pre-whitening

GLM analysis in fMRI assumes that temporal noise in the time se-
ries is random (white); if it is not, then the statistical inference will be
less accurate (Smith et al., 2007; Woolrich et al., 2001). In this study
pre-whitening (FILM in FSL) was investigated to determine if it is
beneficial, in addition to physiological noise modelling, for the analy-
sis. Model fitting residuals revealed that pre-whitening with FILM
was useful for removing extra non-white noise after physiological
noise correction (Fig. 6). The activated voxel numbers in cord
(solid) and CSF (dashed) areas for different models and stimuli
were then investigated (Fig. 7). The PNM increases the number of ac-
tivated voxels both in the cord and CSF areas. The finding that “activa-
tion” may be observed both within the cord and in the CSF space
surrounding the cord is in agreement with previous animal (Zhao et
al.,, 2008) and human data (Cohen-Adad et al.,, 2010). The relative
size and proximity of the neuronal tissue of interest to large draining
veins on the surface of the cord, makes such observations probable.
Whilst we are unable to provide a “ground-truth” estimate of the cor-
rect number of true positives in our data, we can point to the relative
increases in voxels marked as active in the cord and CSF. A new metric
G, the ratio of the normalised activated voxel counts in the spinal cord
and CSF, was defined. The G-index attempts to provide a measure of
confidence in the activation data, and demonstrate the relative im-
pact of both the PNM and pre-whitening. Fig. 7 demonstrates that al-
though the PNM does increase the number of positives in the both the
cord and CSF, the relative increases are always greatest in the cord —
as indicated by positive G values, and this ratio increased when we in-
cluded the PNM, and more so when including both PNM and FILM
pre-whitening.

A novel finding from the G values is that pre-whitening is important
for controlling false-positive rate in spinal cord fMRI analysis. In a recent
study of the effects of pre-whitening (Smith et al., 2007), false-positive
voxels in the brain were obtained by modelling a “pseudo-design” from
resting state data. Their results suggested that pre-whitening is re-
quired for single-subject GLM analysis and fixed-effects group analysis
of fMRI data. Similarly, we found that pre-whitening was beneficial for
single-subject analyses by controlling for putative false positive activa-
tions in the CSF.
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Limitations

A number of limitations should be considered in the current study.
First, fMRI data utilising thermal and punctate stimuli, and not resting
data, were used for physiological noise model evaluation. Resting state
data might provide a cleaner baseline, without any complications aris-
ing from correlations with the experimental design. Second, we did
not directly measure changes in CO2, and instead used a surrogate
marker: RVT. Furthermore, we did not investigate temporal shifting of
RVT in order to account for the likely variable delay between respiration
changes and the BOLD response. Third, the cardiac (crf) and respiratory
(rrf) response functions that were used were taken from brain-based
studies, using the same equations and parameters, which might explain
why these response functions (crf and rrf) were not found to be benefi-
cial for this spinal cord data. Further study is needed to determine how
best to model the response functions in the human spinal cord.

Finally, the decision whether to include in the GLM covariates that
might potentially be correlated to the stimuli of interest analysis is
still hotly debated, and well known in the context of motion parame-
ters and stimulus correlated motion. Field et al. (2000) found that
motion parameters could have a deleterious effect if correlations
approached R=0.5. A recent study concluded that subject motion,
whether correlated to the design model or not, can have a significant
impact on the sensitivity of group-level fMRI data analysis (Johnstone
et al,, 2006). In our study, HR (R=—0.25 to 0.25) and RVT (R=
—0.14 to 0.38) correlated with the experimental design and had an
impact on parameter estimation and statistical results — particularly
for noxious painful stimuli. Including stimulus-correlated regres-
sor(s) will inevitably alter estimated effect sizes, as shared variance
will be split across the design regressors. The impact of this will de-
pend on the relative effect sizes and correlations between regressors
and can lead to either increases or decreases in the statistics, which
might be due to changes in either sensitivity or specificity. In the ab-
sence of ground truth it is not possible to test this definitively. It
should be noted that there is still no consensus on these issues for
GLM analysis.

ICA-based denoising is an alternative approach for removing
physiological noise effects. However, ICA requires a robust method
for labeling independent components as representing artefacts to be
removed or neural signals of interest to be spared. Typically, visual in-
spection of ICA maps would not be sufficient for unambiguous identi-
fication of noise components in the spinal cord. Both Brooks et al.
(2008) and Piché et al. (2009) successfully explored the patterns of
physiological noise using ICA, however, both studies used very short
TR acquisitions to critically sample the physiological processes, and
so could identify the noise components easily from corresponding
power spectra. In general, it will be extremely difficult to distinguish
physiological noise from signals of interest with ICA — where typically
used TRs will lead to aliasing of the signals of interest.

Conclusions

Extending functional MRI beyond the brain to the spinal cord and
brainstem is of great potential value in both basic research and clini-
cal settings. Reducing physiological noise in sub-cortical central ner-
vous system structures will aid interpretation of fMRI data. In this
study, we explored the utility of different model-based physiological
noise correction approaches via the general linear model (GLM), in-
corporating direct physiological measurements taken from the sub-
ject. Both physiological noise model (PNM) and selective averaging
filter (SAF) significantly reduced cardiac and respiratory noise com-
pared to not modelling physiological noise. However, PNM outper-
formed SAF in terms of the residual signal variation and activation
statistics. Inclusion of a cerebrospinal fluid (CSF) regressor was
found to be extremely beneficial as it explained a significant amount
of unmodelled signal variance and increased activation statistics.

Including motion correction parameters as nuisance regressors was
found to have a mostly positive impact, increasing the number of acti-
vated voxels in the cord. However, including nuisance regressors that
account for variation in heart rate (HR) and the rate and depth of
breathing (RVT) reduced the number of activated voxels in the cord,
due to the non-zero correlation with the experimental design. We pre-
sent a summary of the different physiological noise models, with rec-
ommendations, in Table 3. Finally, we found that using pre-whitening
in addition to physiological noise correction was advantageous in
order to remove additional non-white noise from the data and control
false-positive detection rates.
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